The Caffarelli-kohn-nirenberg Inequalities on Complete Manifolds

نویسندگان

  • Changyu Xia
  • CHANGYU XIA
چکیده

We find a new sharp Caffarelli-Kohn-Nirenberg inequality and show that the Euclidean spaces are the only complete non-compact Riemannian manifolds of nonnegative Ricci curvature satisfying this inequality. We also show that a complete open manifold with non-negative Ricci curvature in which the optimal Nash inequality holds is isometric to a Euclidean space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Caffarelli-Kohn-Nirenberg type inequality on Riemannian manifolds

We establish a generalization to Riemannian manifolds of the Caffarelli-KohnNirenberg inequality. The applied method is based on the use of conformal Killing vector fields and Enzo Mitidieri’s approach to Hardy inequalities. 2000 AMS Mathematics Classification numbers: 58E35, 26D10

متن کامل

Fractional Caffarelli-Kohn-Nirenberg inequalities

We establish a full range of Caffarelli-Kohn-Nirenberg inequalities and their variants for fractional Sobolev spaces.

متن کامل

Symmetry of Extremal Functions for the Caffarelli-kohn-nirenberg Inequalities

We study the symmetry property of extremal functions to a family of weighted Sobolev inequalities due to Caffarelli-Kohn-Nirenberg. By using the moving plane method, we prove that all non-radial extremal functions are axially symmetric with respect to a line passing through the origin.

متن کامل

Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities

We consider a family of Caffarelli-Kohn-Nirenberg interpolation inequalities and weighted logarithmic Hardy inequalities which have been obtained recently as a limit case of the first ones. We discuss the ranges of the parameters for which the optimal constants are achieved by extremal functions. The comparison of these optimal constants with the optimal constants of Gagliardo-Nirenberg interpo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007